

WORKING FOR A HEALTHY FUTURE

Health benefits of LAQM

Alison Searl Director of Analytical Services

www.iom-world.org

Outline

- Health effects of particles which effects and components matter most?
- Health effects of NO₂?
- Nitric oxide: the forgotten pollutant
- Health impact of current exposure to air pollution in Edinburgh
- Are air pollution impacts evenly shared?
- Importance of air pollution versus other causes of illhealth
- Other health benefits of reducing emissions
- Benefits of LAQM?

Effects of particle exposure

- On high pollution days, raised PM levels associated with increased mortality, emergency health care demand, respiratory symptoms and cardiovascular effects
- Long term exposure correlated with increased mortality risk
- The American Cancer Society reported a 6% increase in long term mortality risk per 10 ugm⁻³ increment in PM_{2.5} which has been widely used in effects quantification
- A recent Dutch study also found a 6% increase per 10 ugm⁻³ increment in PM_{2.5}
- A recent update of the ACS study reported an 12% increase in ischaemic heart deaths per 10 ugm⁻³

Which particles matter?

- Adverse effects of air pollution most strongly associated with particles
- PM_{2.5} strongly associated with cardiovascular illness and mortality
- PM_{2.5-10} associated with respiratory illness
- Some experimental evidence indicating that PM₁ is relatively more harmful than PM_{1-2.5} (eg impact on cardiovascular parameters)
- Substantial evidence linking traffic emissions to adverse effects

NO₂ – Why were air quality objectives set?

- In time series studies NO₂ correlates with daily mortality and with respiratory hospital admissions
- In studies of schoolchildren, personal exposure to NO₂ linked to day to day variability in respiratory function and respiratory symptoms
- Less consistent evidence linking respiratory function and respiratory symptoms to ambient NO₂ or NO₂ in indoor air
- Long term effects on lung function growth and respiratory symptoms in children correlated with NO₂ in some studies
- Better evidence linking children's respiratory health to traffic emissions

Is NO₂ the causal agent of observed effects?

- In outdoor air quality studies, NO₂ is a good marker of traffic emissions
- In indoor air quality studies, NO₂ is a good marker of use of a gas cooker
- In both cases NO₂ likely to be correlated with extremely fine PM
- NO₂ may also be correlated with substances such as aldehydes, other VOCs, PAHs

So does NO₂ matter?: high pollution days

- Volunteer experiments have found effects on airways responsiveness at concentrations marginally higher than during high pollution events
- Experiments do not include the full spectrum of susceptibility in the general population
- Reasonable to anticipate that exposure to NO₂ on high pollution days will cause adverse respiratory effects in a small number of people – and may enhance the response to PM

What about long term exposure to NO₂? Animal data

- In animal experiments long term exposure to NO₂ gave rise to emphysema like effects (188 ugm⁻³ with a daily two hour peak of 1880 ugm⁻³)
- but no effects seen on continuous exposure to NO₂ at 940 ugm⁻³ for 12 months
- Reduced resistance to infection following repeated exposure to 940 ugm⁻³ (TWA = 117 ugm⁻³)
- Peak levels of exposure seem to be more important than long term low level exposure

What about long term exposure to NO₂? Human evidence

- No epidemiological evidence that exposure to NO₂ in ambient air associated with reduced life expectancy
- 40 ugm⁻³ objective based on metaanalysis of effects of gas cooking which gives rise to an increase of about 30 ugm⁻³ in indoor NO₂
- There is evidence that long term exposure to traffic pollution leads to increased mortality risks

Current view of importance of NO₂?

- Some consensus that effects attributed to NO₂ in outdoor air are due to some other component of traffic pollution
- Studies of indoor pollution generally find that emissions from gas combustion may have small adverse effects on children's respiratory health
- The WHO took the view that the reduction in traffic emissions required to achieve the NO₂ objectives would be beneficial regardless of the role of NO₂
- NOx emissions contribute to the formation of secondary particles

Nitric oxide: the forgotten pollutant?

- Biologically active molecule
- Less soluble than NO₂ reaches distal airways
- Balance between endogenous NO synthesis, tissue levels of NO and NO concentrations in exhaled air
- NO₂ gives rise to adverse respiratory effects at lower concentrations than NO
- NO has effects on blood vessels, the inflammatory process and cell function that are not observed on exposure to NO₂

Health impacts of current exposure to air pollution in Edinburgh: assumptions

	City	AQMAs
Concentrations PM ₁₀ ugm ⁻³	11.1	18
Concentrations PM _{2.5} ugm ⁻³	6.9	11.6
Concentrations NO ₂ ugm ⁻³	15.2	40
Population	448624	11892*
% Population under 16	15.3%	7.6%
% Population over 60	19.8%	13.3%

*including population within 50 m AQMA boundary data provided by Graeme Gainey, Edinburgh CC

Health impacts of current exposure to air pollution in Edinburgh

	City		AQMAs	
	Background	Air	Background	Air
Annual impacts	rate	pollution	rate	pollution
Deaths brought forward	3038	25	81	1
Emergency respiratory and CV hospital				
admissions	9462	129	251	7
GP visits asthma/ LRS	29205	926	775	40
Days loss life expectancy	-	804935	-	35949

Individual Loss of life expectancy over 75 years:

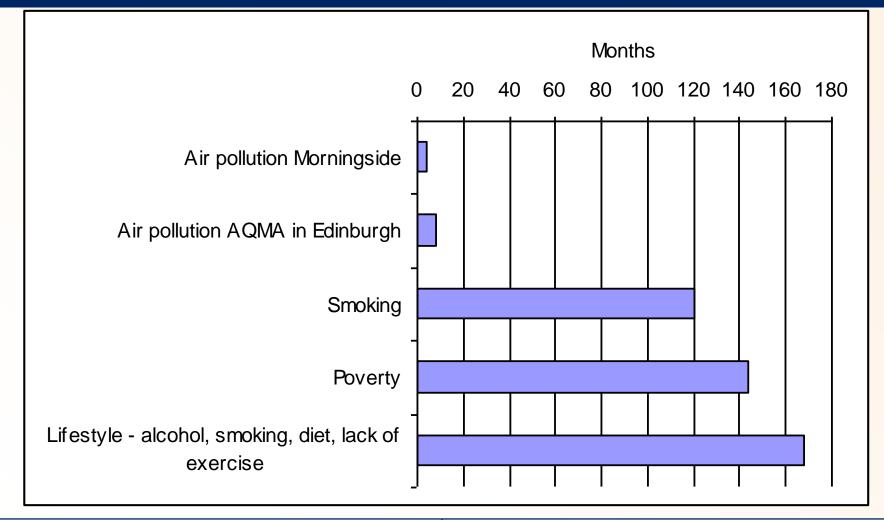
City average 135 days, AQMA 227 days

Health impacts of current exposure to air pollution in Edinburgh

	City	AQMAs
Respiratory symptoms in		
asthmatics:		
Days per adult per year	1.86	3.02
Days per child per year	1.48	2.40
Total across population per year	9353	380
Restricted Activity Days:		
Days per adult per year	0.28	0.45
Total across population per year	105398	4945
Bronchitis – new cases per year	257	12

Distribution of effects

	Percent within AQMAs
Population	2.6%
Days lost per year across population	4.4%
Number of deaths brought forward	4.4%
Emergency hospital admissions	5.2%
GP visits asthma/LRS	4.4%



Are air pollution impacts evenly shared?

- Differences in exposure 4 months loss of life expectancy in Morningside versus 5.5 in Comely Bank
- Effects on daily mortality and health care demand increase with age and deprivation
- Impacts of age and deprivation partly due to higher baseline rates and differences in exposure
- Increased vulnerability associated with age and deprivation beyond that attributable to baseline health and exposure
- ACS study some evidence of increased risks associated with lower educational status
- How many months of loss of life expectancy due to airborne PM in Glasgow's East End?

Public health importance of air pollution

Other health benefits of reducing emissions

- Reducing car use could
 - Revitalise local communities

 increased social contact,
 improved welfare
 - Increase exercise improved cardiovascular health
 - Reduce noise exposure
 - Promote different life choices
- Improved liveability of neighbourhoods – improved mental well being

Benefits of LAQM?

- Reduce peak exposures to NO₂ and SO₂ that may trigger respiratory symptoms
- Reduce peak exposures to PM reduce health care demand, symptoms (24 hour std not a "no effects level")
- Substantial benefits in reducing population mean exposure to airborne particles – gain in life expectancy
- No obvious benefit in reducing NO₂ independently of reducing exposure to PM
- Reducing dependency on cars could bring other health benefits unrelated to air pollution

Thank you for listening

